数据结构——树的基本概念和性质

树的概念

树是n(n≥0)个结点的有限集合,n = 0时,称为空树,这是一种特殊情况。在任意一棵非
空树中应满足:
1)有且仅有一个特定的称为根的结点。
2)当n > 1时,其余结点可分为m(m > 0)个互不相交的有限集合T1, T2,…, Tm,其中每个集
合本身又是一棵树,并且称为根结点的子树。

树的术语

  • 节点的度:一个节点含有的子树的个数称为该节点的度;
  • 树的度:一棵树中,最大的节点的度称为树的度;
  • 叶节点或终端节点:度为零的节点;
  • 父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点;
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次;
  • 堂兄弟节点父节点在同一层的节点互为堂兄弟;
  • 节点的祖先:从根到该节点所经分支上的所有节点;
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙;
  • 森林:由m(m>=0)棵互不相交的树的集合称为森林。

树的种类

  • 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
  • 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
  • 二叉树:每个节点最多含有两个子树的树称为二叉树;
  • 完全二叉树:对于一棵二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值(即子节点数目为2),且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
  • 平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
  • 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树;
  • 霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
  • B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树。

树的存储与表示

线性表有两种存储方式:顺序存储和链式存储。二叉树的存储也是一个线性表结构,因此也具有顺序存储和链式存储两种方式。

顺序存储与链式存储比较

(a)顺序存储分配的内存空间大小是固定的,不好根据二叉树结点数目的增多而动态扩展。如果内存空间分配过大,势必造成内存空间的浪费;如果分配过小,则会产生数组溢出的问题。另外,顺序存储在增加和删除结点时时间复杂度为O(n^2)。顺序存储的好处是方便查找结点。

(b)链式存储可以动态分配内存空间,比顺序存储更加灵活、方便,结点的最大数目仅与系统存储空间相关。另外,在插入/删除结点时的时间复杂度仅为O(n)。因此,在对二叉树操作时更多采用链式存储结构。

常见的一些树的应用场景

1、.xml,html等,那么编写这些东西的解析器的时候,不可避免用到树

2、.路由协议就是使用了树的算法

3、.mysql数据库索引

4、.文件系统的目录结构

5、.所以很多经典的AI算法其实都是树搜索,此外机器学习中的decision tree也是树结构

作者:LittlePy
链接:https://www.jianshu.com/p/e9870202ecd8
来源:简书

点赞

发表回复

电子邮件地址不会被公开。必填项已用 * 标注